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Abstract— Formal verification becomes the method of choice for designs with stringent quality requirements. For 

complex architectures with many implementation alternatives, however, the development and maintenance of complete 

formal specifications remains a challenge. In this work, we present an efficient semi-formal specification approach for 

processor designs with a large number of architectural variants. The semi-formal specification serves as a reference to 

implementation and facilitates automatic generation of formal properties. We show an application of this method to 

complete formal verification of a family of automotive digital signal processors (DSP), report on the verification effort, 

and discuss the lessons learned. 
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I.  INTRODUCTION 

Custom-designed DSP architectures deliver the required safety and performance for automotive appliances at minimum 

area and power consumption. Their instruction set architecture (ISA) and implementation details strongly depend on the 

target use. Due to the large spectrum of possible applications, the design and verification of reusable automotive DSPs poses 

a challenge.  

The architectural diversity of automotive DSPs is managed by adopting a high-level synthesis approach. Instead of 

manually developing and maintaining each processor design, a code generator covering a family of DSP architectures is 

developed. The generator produces processor implementations from architectural parameters such as word width, set of 

supported instructions, amount of registers, or type of safety mechanisms. This increases reusability, reduces maintenance 

effort, and facilitates agile development with frequent requirement changes.  

To fully benefit from the push-button high-level synthesis and to make the intellectual property (IP) truly reusable, the 

entire DSP family must be covered by verification, including architectures that may be generated in the future. Due to 

stringent safety requirements of automotive applications, the verification must be complete—the functional sign-off must 

assure that the generated implementations adhere to the specification and that the specification itself is complete and 

unambiguous.  

A. Related Work 

High-level synthesis of application-specific instruction set processors (ASIP) is well covered in the literature and widely 

applied in the industry [10]. To make sure that generated processor implementations match high-level architectural 

descriptions, ASIP development methodologies incorporate methods for automatic generation of test benches and formal 

properties [10,3]. To our best knowledge, however, no existing ASIP framework can guarantee verification completeness. 

Thus, a problem in the synthesis algorithm or a programming bug may still result in an implementation error that escapes 

the verification process. 

The progress in model checking algorithms has enabled complete formal verification of complex digital systems. To 

deal with high design complexity, assume-guarantee reasoning [12] and compositional verification methods such as [9] can 

be applied. Specification completeness can be verified by showing that any two implementations that adhere to the formal 

specification are functionally equivalent [1,4].  

In the complete verification methodology of [1], formal specifications are developed manually in an iterative process 

which requires a relatively mature design [2]. Extensions of this approach include automatic generation of formal 

specifications from intermediate models of processor ISA [7,8] or bus protocols [14]. This reduces the overall verification 

effort but still requires the verification engineer to develop the specification model and provide a mapping between the 

model and the actual implementation. 
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B. Contributions 

In this work, we present a novel approach to processor specification that significantly reduces the effort of complete 

formal verification. Instead of manually deriving properties or models from informal specifications, as in [1,2,7,8,14], we 

develop a semi-formal specification as a reference for both implementation and verification. The semi-formal specification 

consists of a formal description of instruction commitments and an informal specification of auxiliary functionality. This 

hybrid specification is (i) sufficiently precise to allow completeness analysis of the main functionality even before the 

implementation process starts, (ii) abstract enough to withstand major architectural changes, (iii) easy to develop for 

engineers with little or no background in formal methods, and (iv) concise and easy to understand and review. This approach 

proved very successful in the verification of several DSP architectures. The resulting verification framework features full 

functional coverage and is flexible enough to verify any future architecture of the DSP family.  

After a short overview in Section II, we describe the semi-formal specification approach in Section III. Section IV 

presents the verification flow. In Section V we report on the application of this approach to the DSP family. Section VI 

concludes the paper. 

II. BASIC CONCEPTS 

In the following, we give a brief overview over the state-of-the-art complete verification methodology, present the basics 

of our semi-formal specification approach, and discuss the verification flow. 

A. Operational Properties and Completeness 

Our verification approach is based on the verification methodology of [1,2], which is marketed under the name 

GapFreeVerification™ by OneSpin Solutions1. This approach uses so called operational properties to construct complete 

formal specifications and includes methods to verify specification completeness. 

The concept of operational properties derives from interval properties [11]. An operational property is in principle an 

implication defined over a time frame. Both the antecedent and the consequent of an operational property specify a sequence 

of conditions over a finite but not necessarily fixed number of clock cycles. The property holds if the sequence of events 

specified in the antecedent is always followed by the sequence specified in the consequent. For instance, the following 

behavior can be conveniently captured with an operational property: “If the content of the instruction register in cycle 0 

corresponds to a branch, and the branch condition evaluates to true in cycle 1, then the program counter must be set to the 

target address in cycle 3”. 

To enable completeness analysis, an operational property must have a specified start cycle and an end cycle (called 

hooks in [1]) which may be different from the time span covered by the property’s antecedent and consequent. For a set of 

operational properties to be complete, every execution trace must seamlessly match to a sequence of properties, such that 

(i) the end cycle of every property in the sequence overlaps with the start cycle of its successor property, (ii) around every 

start cycle, the antecedent of exactly one property that may start in this cycle is satisfied, and (iii) in every clock cycle, the 

state of all relevant primary outputs and architectural registers is unambiguously determined (specified) by the consequents 

of consecutive properties. 

Apart from operational properties, the completeness analysis requires a so called completeness plan which lists, among 

others, primary design inputs, environment constraints, determination requirements for architectural registers and primary 

outputs, and a property graph specifying the expected property sequencing. For a more detailed overview please refer to [2]. 

B. Specification Approach 

Our specification process begins with the development of implications that describe the execution of processor 

instructions. One implication covers one cycle of instruction execution and captures the functional and temporal relations 

between primary inputs, architectural registers, and primary outputs. The implications for the full instruction set are written 

in a tabular form that is henceforth called tabular specification. The functionality covered by the tabular specification is 

called core functionality.  

In order to improve specification readability and make the verification process manageable, fragments of processor 

functionality that are shared by many instructions are black-boxed in the tabular specification. A black-boxed part of 

functionality with a clearly defined interface is called auxiliary cluster. Each auxiliary cluster is specified in an informal 

                                                                 
1 http://www.onespin-solutions.com/ 
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way and verified separately. For instance, stacks and queues are good candidates for auxiliary clusters since their interface 

is clear and their functionality is same for all instructions that use them. 

The structure of the resulting semi-formal specification is depicted Figure 1. The direction of arrows denotes which 

specification is responsible for determining the target signals, i.e., specifying their expected value for all possible input 

scenarios. The tabular specification is responsible for determining a subset of primary outputs, architectural registers, and 

all inputs to auxiliary clusters. The informal specification determines all cluster outputs as well as the remaining primary 

outputs and architectural registers. 

To facilitate sound assume-guarantee reasoning, we avoid circular dependencies between specifications of the core 

functionality and auxiliary clusters. To this end, the outputs of auxiliary clusters are treated as free (unconstrained) variables 

in the tabular specification. Likewise, the specification of an auxiliary cluster includes no assumptions about the core 

functionality or any other cluster—all cluster inputs are treated as primary inputs. The resulting semi-formal specification 

is explained in more detail in Section III. 
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Figure 1. Structure of the semi-formal specification 

C. Verification Flow 

Figure 2 presents the general verification flow. The tabular specification (formal model of core functionality) is 

automatically translated into a set of operational properties. The ISA-specific constraints and the completeness plan are also 

generated automatically. In order to support a wide spectrum of design variants, the automatic translators are kept flexible 

enough to deal with major changes of the tabular specification (e.g. removal and addition of instructions).  
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Figure 2. Verification flow 

Formal properties of auxiliary clusters are inferred manually from the informal cluster specifications. Where possible, 

the cluster properties specify the expected value of cluster outputs for all execution traces and hence are complete. 

Architectural features that are subject to change (word width, number of registers, optional functionality, etc.) are 

parameterized so that the property set is valid for all architectural variants. 

The completeness and soundness of the tabular specification is verified early in the design process, possibly even before 

any implementation is started, by analyzing the set of generated operational properties. It is formally verified that the 

properties of core functionality determine all relevant outputs in every possible execution trace, thus guaranteeing 

verification completeness. The verification flow is described in more detail in Section IV. 
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III. SEMI-FORMAL SPECIFICATION 

In this section, by taking the DSP example, we explain the tabular representation and the decomposition into core 

functionality and auxiliary clusters. 

A. Tabular Representation 

The automotive DSPs considered in this paper feature a single instruction, multiple data (SIMD) architecture with an 

arbitrary number of data paths and a configurable number of general-purpose registers per data path. The three-stage pipeline 

with in-order execution supports about 80 single- and multi-cycle instructions, fixed-point arithmetic of configurable width, 

interrupts, and a sleep mode. The DSPs also include dedicated (non-memory-mapped) stacks, configurable address 

generators for RAM and ROM, and several error detection mechanisms. For a given set of architectural parameters, the 

register transfer level (RTL) processor implementation is generated automatically. A typical implementation consists of 20k 

lines of VHDL code. 

The instruction set of every processor in the DSP family is described with a tabular specification that completely covers 

the core functionality and enables completeness analysis in the sense of [1]. Figure 3 shows a simple example that conveys 

the basic principles and syntax of the tabular representation. Each row of a tabular specification describes the expected 

execution of either one single-cycle instruction, one cycle of a multi-cycle instruction, or one cycle of any behavior that is 

not triggered by software (startup sequence, interrupt handling, etc.). Instructions can be added or removed simply by adding 

and removing rows in this specification. The start cycle of a row is called n-th cycle; the end cycle of a row is cycle n+1. 

The cycle n+1 of a row overlaps with the n-th cycle of another row that describes either the first cycle of a successor 

instruction or the next cycle of a multi-cycle instruction. For pipelines with no stall mechanism, the cycles refer to the actual 

pipeline clock. For pipelines with a stall mechanism, the cycles refer to a virtual clock that ticks only when no stalling takes 

place.  

The columns are divided in two sets: the left-hand side columns describe instruction triggers, while the right-hand side 

columns describe instruction commitments. Each column describes the state of exactly one signal over cycle n+m, where 

m∈ℤ is a constant. The content of a row is understood as follows: if all conditions specified in the instruction trigger are 

fulfilled, all expectations posed in the instruction commitment must hold. In case of multi-cycle instructions specified in 

more than one row, the instruction trigger is understood as the conjunction of triggers of all the corresponding rows; the 

same applies to commitments. 

Configurable architectural features, such as processor word width or number of registers, are represented by variables. 

Signal names are prefixed with PI_/PO_ for primary inputs/outputs, AR_ for architectural registers, and CI_/CO_ for cluster 

inputs/outputs. Time points (cycles) are denoted in parentheses, e.g. AR_PC(n+1) represents the state of the program counter 

in cycle n+1. Trigger and commitment cells may contain immediate values and expressions in SystemVerilog syntax. An 

empty cell denotes a don’t care. Triggers for the instruction register are specified using bit patterns (see column 

AR_INSTR(n) in Figure 3): zeroes and ones stand for fixed opcode bits, whereas letters denote the fields of operand 

specifiers. For instance, the expression AR_A[a](n+1)+AR_D[ddd](n+1) denotes the sum of the content of the chosen 

accumulator and data register in cycle n+1, whereby these registers are selected by the content of the ddda field of 

AR_INSTR(n) (i.e., content of the instruction register in the n-th cycle).  

Figure 3. Example of a tabular specification for two single-cycle and two multi-cycle instructions 

  Instruction Triggers Instruction Commitments 

Mnemonic 

AR_INSTR 

(n) 

AR_INSTR 

(n-1) 

AR_INSTR 

(n-2) 

AR_PC 

(n+1) 

AR_A[a] 

(n+2) 

CI_STK_OP 

(n) 

CI_STK_DIN 

(n) 

PO_RAM_ADDR 

(n+1) 

NOP 
00110000 

00100000 
   AR_PC(n)+1 Stable nop    

ADD D<0÷7> A<0÷1> 
001000ii 

ii00ddda 
    AR_PC(n)+1 

AR_A[a](n+1)+ 

AR_D[ddd](n+1) 
nop     

LDR <addr> A<0÷1> 
11001000 

00000a11 
    AR_PC(n)+1 Stable nop    

(cycle 2) 
bbbbbbbb 

bbbbbbbb 

11001000 

00000a11 
  AR_PC(n)+1 PI_RAM_RDATA(n+1) nop   

bbbbbbbb 

bbbbbbbb 

JSR <addr> 
101000ii 

iiiiiccc 
    AR_PC(n)+1 Stable nop    

(cycle 2) 
bbbbbbbb 

bbbbbbbb 

101000ii 

iiiiiccc 
  

cccbbbbb 

bbbbbbbbbbb 
Stable push AR_PC(n)+1   

(cycle 3) 
00000000 

mmmmmmmm 

bbbbbbbb 

bbbbbbbb 

101000ii 

iiiiiccc 
AR_PC(n)+1 Stable nop     

RTS 
10101000 

00000000 
    CO_STK_DOUT(n) Stable pop     

(cycle 2)  
10101000 

00000000 
 AR_PC(n)+1 Stable nop    
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For conditional instructions or instructions with multiple execution modes, several rows may be used to describe the 

commitments in each mode. This, however, may bloat the specification and lead to data duplication. Instead, we introduce 

so called overlay rows for each execution mode (not shown in the example). Just one overlay row is used, for instance, to 

describe how the behavior of all arithmetic-logic instructions changes when their condition is not met. 

B. Auxiliary Clusters 

A fragment of functionality is classified as auxiliary when it either appears in the description of many instructions or is 

too complex to capture in the tabular specification. (Note that auxiliary clusters do not necessarily correspond to actual 

modules of the implementation.) The functionality of auxiliary clusters is specified informally and verified separately. 

Clustering reduces redundancy in the tabular specification and eases the sign-off review. Moreover, it improves verification 

efficiency since auxiliary clusters need not be verified multiple times (for each instruction that uses their functionality) but 

just once, possibly at module-level.  

Auxiliary clusters are black-boxed in the tabular specification: the tabular specification does not describe any relation 

between cluster inputs and outputs but merely determines the value of cluster inputs. To avoid circular dependencies, the 

tabular specification poses no assumptions on cluster outputs and uses them as if they were primary inputs (e.g. to determine 

the values of other signals).  

In the example of Figure 3, the return stack is black-boxed. The tabular specification determines only the stack inputs 

(CI_STK_OP and CI_STK_DIN) but does not specify how the stack works. The stack head (CO_STK_DOUT) is used to 

determine the state of the program counter (AR_PC) in the second cycle of the RTS instruction as if it were a primary input. 

In the semi-formal specification of the DSP family, the following functionality is handled with auxiliary clusters: 

multiply-accumulate operations, configurable address generation, I/O control, stacks, and interrupt queues. This 

functionality is active during the execution of many instructions, which justifies separate verification. The clusters have a 

relatively simple input/output behavior and require no assumptions that would need to hold of core functionality or other 

clusters. 

IV. VERIFICATION FLOW 

In this section, we describe the generation of properties from tabular specifications, underline the benefits of early 

completeness checks, and explain the verification process.  

A. Translation of the Tabular Specification 

The tabular representation is automatically translated into a set of operational properties. Since the tabular representation 

is derived from the concept of operational properties, the translation is fairly straightforward. Each generated property 

corresponds to one instruction specified in one or more rows of the tabular specification. For conditional instructions and 

instructions with several execution modes, the properties are augmented with the content of overlay rows. The rows 

describing the startup sequence, interrupt handling, and other externally triggered operations are treated in the same way as 

rows of regular instructions. Below we give an example of the property generated for the instruction ADD from Figure 3 

(language: SystemVerilog with Timing Diagram Assertion Library™ [13]):  
property prop_ADD_D_A; 

  reg [p_instr_width-1:0] opcode;                     // variable for the opcode 

  reg condition_ok;                                   // variable for conditional execution 

    t ##0 AR_INSTR ==? 16'b001000XXXX00XXXX and                          // TRIGGERS 

    ... 

    t ##0 set_freeze(opcode, AR_INSTR) and                               // store opcode 

    t ##1 set_freeze(condition_ok, check_condition(getField_i(opcode)))  // store condition 

implies                                                                  // COMMITMENTS 

    t ##1 AR_PC == ($past(CO_INTERRUPT_TRIG) ? $past(CO_INTERRUPT_ADDR) 

                                             : $past(AR_PC) + 1'b1) and 

    t ##0 CI_STK_OP == stack_nop and 

    t ##2 AR_A[getField_a(opcode)] == (condition_ok)? 

             $past(AR_A[getField_a(opcode)]) + $past(AR_D[getField_d(opcode)]) 

           : $past(AR_A[getField_a(opcode)]) and 

    t ##2 (getField_a(opcode) == 'd0) || $stable(AR_A[0]) and // AR_A[0] modified or stable 

    t ##2 (getField_a(opcode) == 'd1) || $stable(AR_A[1]) and // AR_A[1] modified or stable 

    ... 

    t ##1 right_hook; 

endproperty 
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ISA-specific constraints and the completeness plan are also automatically derived from the tabular specification. The 

constraints are responsible for restricting execution traces to valid programs, among others, by limiting the output of program 

memory to sequences of valid opcodes. The completeness plan lists all signals that are supposed to be determined by the 

tabular specification (commitments), all signals treated as primary inputs (including cluster outputs as these signals are 

verified separately), the ISA-specific constraints, and the set of expected successor instructions for each instruction (property 

graph). 

The properties of auxiliary clusters are developed manually. The informal cluster specification, together with the tabular 

specification defining the interface and handshaking, serves as a reference. Care is taken to make the cluster properties 

complete. In the simplest case, this is achieved by developing properties that unconditionally specify the cluster outputs as 

a function of cluster inputs. For instance, stacks are described with properties that contain a reference stack model which 

exhaustively covers the expected input-output behavior.  

B. Early Completeness Checks 

The completeness and soundness of tabular specifications can be verified even before the implementation begins. After 

the translation to properties, the methods described in Section II.A are used to find the following issues: (i) execution 

scenarios that do not match to any specified instruction and hence are uncovered by the specification (gaps in the triggers), 

(ii) execution traces in which some primary outputs or architectural registers are not specified or ambiguous (gaps in 

commitments), (iii) contradictions in the triggers and commitments which may reveal architectural issues, (iv) execution 

traces that violate the property graph specified in the completeness plan (instruction sequencing problems). The early 

completeness checks can considerably improve the specification quality and reduce the number of design iterations. 

C. Verification Process 

The resulting DSP verification framework consists of the translators for tabular specifications and the set of properties 

for auxiliary clusters. To verify any DSP architecture, the following input needs to be provided apart from the 

implementation: (i) the tabular specification of the target architecture (largely reused across DSP implementations), (ii) the 

mapping of signals in the verification framework to signals of the implementation (straightforward since the tabular 

specification serves as a reference to implementation), (iii) target architectural parameters (fixing variables in the verification 

framework). The work necessary to verify any new architecture of the DSP family is therefore reduced to a minimum.  

To lower the effort of formal reasoning, auxiliary clusters can be black-boxed in the implementation model while 

verifying core functionality. To this end, signals corresponding to cluster outputs are replaced with primary inputs. This 

method, however, should be used with care if the outputs of a black-boxed cluster are used in any trigger of the tabular 

specification. In this case, black-boxing may mask a bug that makes the trigger unsatisfiable—an instruction that can never 

execute may go unnoticed. 

Similarly, the verification of auxiliary clusters can be performed at module-level (i.e., just for the module that 

implements the auxiliary cluster) and/or with loosened environmental constraints. This does not compromise completeness 

but may result in spurious counterexamples. In such cases, interface assumptions are required, and potential circular 

dependencies need to be taken care of (assume-guarantee reasoning). In the verification of the DSP family, we resort to 

module-level verification just for the stacks which, however, require no additional assumptions.  

D. Sign-off Review 

The methodology of [1] specifies which elements of the verification framework should be reviewed for sign-off. These 

guidelines can be directly applied to the automatically generated operational properties, constraints, and the completeness 

plan of core functionality. With the tabular specification as a reference, the review process is fast and often straightforward. 

Since the generated results are examined, the automatic translators need not be reviewed.  

The sign-off review of auxiliary clusters must make sure that the properties of auxiliary clusters adhere to the informal 

specifications and cover all cluster outputs. To assure completeness, it must be additionally verified that cluster outputs are 

determined unambiguously and unconditionally, i.e. for every possible execution trace. This holds trivially if the properties 

describe the cluster outputs as a combinational or sequential function of just the cluster inputs and/or primary inputs.  

E. Implementation 

For portability and accessibility, we store tabular specifications in a standard spreadsheet format. The automatic 

translators of the tabular representation are implemented using Java Emitter Templates (JET) [5]. The operational properties 
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of core functionality are expressed in SystemVerilog assertions using Timing Diagram Assertion Library (TIDAL™) [13]. 

The properties of auxiliary clusters are written in plain SystemVerilog assertions. Design verification and completeness 

checks are performed with OneSpin 360 Design Verifier. 

To reduce the risk of flaws in the tool chain and to conform to ISO 26262-8 guidelines for confidence in the use of 

software tools [6], we take care that the software which generates the verification framework is sufficiently divergent from 

the software that produces DSP implementations. Ideally, the tabular specification and the specification of architectural 

parameters should be the only data common to the design and verification processes. 

V. RESULTS 

Three verification engineers were involved in the verification of the DSP family, two of whom had no previous 

experience with complete formal verification. At the beginning, just one typical DSP architecture was considered. 

Specification clustering made verification planning a straightforward task—two engineers were assigned to auxiliary 

clusters until this functionality was completely verified. Later, verification subtasks for core functionality were identified by 

decomposing the tabular specification row-wise (instruction-wise) and column-wise (signal-wise). After the typical DSP 

architecture was fully verified, the verification framework was applied to four further architectures, and remaining issues 

were resolved. 

For a typical member of the DSP family, the tabular specification contains about 260 rows and 60 columns. The software 

for automatic translation of tabular specifications consists of only 3400 lines of code (LOC). The manually written properties 

of auxiliary clusters require 2500 LOC. Typically, the set of generated properties and ISA-specific constraints comprises 

20k LOC, and the generated completeness plan consists of 600 LOC. The architecture-specific parameters and the signal 

mapping require about 600 LOC. 

A. Lessons Learned 

To make the automatic translation of tabular specifications reusable across architectures and projects, we strived to 

describe all design details in the tabular specification and keep the translators simple. This required several iterations with 

the designers and resulted in a custom syntax of the tabular specification.  

Using one operational property per instruction turns out to be more favorable than describing each instruction cycle with 

a separate property. This makes the specification of trigger conditions simpler and significantly reduces the effort of property 

verification and completeness checking. 

Specifying auxiliary clusters with manually coded properties works well as long as the properties fully describe cluster 

outputs and can be efficiently handled by the verification tool. In case of complex clusters, however, the functionality may 

need to be split into several properties in order to reduce the effort of formal reasoning and ease debugging. In this case, 

instead of using informal cluster specifications, recursive application of the tabular specification may increase productivity. 

Although this approach requires separate tabular specifications for each complex cluster, it facilitates automated 

completeness analysis and eases the sign-off review. 

B. Identified Issues 

The main strength of complete formal verifications lies in discovering specification ambiguities that may lead to 

misinterpretation in the design process and leave design bugs undetected. In total, we identified about 50 issues with the 

tabular specification and 10 problems with the informal specification of auxiliary clusters. The majority of identified issues 

were due to specification gaps such as incomplete instruction triggers or missing commitments. 

Prior to formal verification, the DSP family was verified by the design team using traditional simulative techniques. 

Although the implementations were fairly mature, formal verification found nine bugs, eight of which affected all five 

architectures. While software workarounds could be applied to five of these bugs, the performance loss would be 

inacceptable for some target applications. The majority of the identified issues were corner-case bugs that posed a potential 

safety risk. 

As a by-product of formal verification, the ISA-specific constraints are used as assertions in simulations to detect bugs 

in application software and in the DSP toolchain. For example, they verify limits for operand specifiers to make sure that 

only implemented registers are accessed. These assertions revealed a bug already in the very first application software.  
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C. Verification Effort 

For a typical DSP architecture, a complete verification run takes about five hours with six formal engines running in 

parallel on a typical workstation with twelve cores and 100 GB memory. One hour is spent on the verification of core 

functionality, another hour on completeness checking, and three hours are consumed by the verification of auxiliary clusters. 

The development of the verification framework took seven person months in total, including the verification and 

debugging effort for five DSP architectures. Most of this time was spent on the development of automatic translators for the 

tabular representation and on the verification of core functionality. The verification of auxiliary clusters took about one and 

a half person months. 

Based on our previous experience with complete formal verification, we predict that with a traditional specification and 

manual property development, the verification of a single DSP architecture would take a comparable amount of time as we 

required for the full DSP family. Thanks to the semi-formal specification, just a few hours’ work is sufficient to apply the 

verification framework to any future DSP architecture.  

VI. CONCLUSION 

While formal verification promises full functional coverage, the development and maintenance of complete formal 

specifications for configurable designs remains a challenge. The presented semi-formal specification approach is sufficiently 

clear and intuitive to be used early in the design process and precise enough to support completeness analysis. The tabular 

representation provides a good trade-off between precision and maintenance effort. Through clustering, the verification 

problem is effectively decomposed into manageable verification goals that ease verification planning. The application of 

this approach to a family of processor designs proves its effectiveness in finding specification ambiguities and design bugs, 

and it confirms great productivity gains through IP reuse.  
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